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Abstract--The phenomenon of natural convection in trapezoidal enclosures where upper and lower walls 
are not parallel, in particular a triangular geometry, is re-examined over a parameter domain in which the 
aspect ratio of the enclosure ranges from 0.1 to 1.0, the Rayleigh number varies between 102 and 105, and 
the Prandtl n~ambers correspond to air and water. The time dependent, two-dimensional non-linear problem 
is solved nuraerically and the results confirmed by independent methods. It is found that the numerical 
experiments verify the flow features that are known from theoretical asymptotic analysis of this problem 
(valid for shallow spaces) only over a certain range of the parametric domain, and that this solution breaks 
down as the Rayleigh number is increased beyond 3 × 103, when a bifurcation takes place and a new steady 
state is achieved, that of a multi-cellular type. The transient numerical experiments show that in the present 
parametric domain the single-cell circulation is not stable with respect to the B6nard instability one expects 
in fluid layers heated from below, This result is supported by recent experimental and numerical results 

reported on this problem. 

1. INTRODUCTION 

The transport of heat and mass by buoyancy-induced 
circulations is a mechanism relevant to many physical 
systems. In particular, the problem of convective 
motions in confined geometries has many geophysical 
applications and is of increasing importance given 
recent concern with environmental problems. Exam- 
ples of these applications are differential heating and 
cooling in lakes and estuaries, flow in porous media 
and natural convection in reservoir sidearms. For a 
review on natural convection in enclosures and its 
applications in science and technology see ref. [1]. The 
stability of the flow in confined rectangular enclosures 
has also received cc nsiderable attention in recent years 
[2], as have convective flows in non-rectangular geo- 
metries [3, 4] and in tilted cavities saturated with 
porous material [5:] (in which a thorough review of 
the literature can be found). 

The wedge-like geometry may be used to study 
near-shore thermal, circulation or processes related to 
boundary mixing in shallow lakes or other shallow 
domains with a sloping bottom. For the problem of 
turbulent mixing near boundaries, the equations for 
the mean flow in the turbulent boundary layer, under 
suitable assumptions, are the same as those that 
describe the classical convection problem in a viscous 
fluid, with the molecular coefficients replaced by tur- 
bulent exchange coefficients and the closest geo- 
metrical approximation to a laboratory or field situ- 
ation involving a sloping wall is a wedge region 
contiguous to another of rectangular shape. The work 
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reported here originated from an attempt to use a 
suitable model to study these problems, the first step 
being that of reproducing known results. The work of 
ref. [6], hereafter referred to as PB, seemed to provide 
the desired model, but failure to reproduce their 
results led to a series of studies on the nature of this 
convective system and to a re-examination of their 
conclusions. 

PB's work investigated the fluid dynamics inside a 
triangular enclosure with cold upper wall and warm 
horizontal bottom wall. They applied the asymptotic 
methods of ref. [7] to find the approximate steady- 
state circulation pattem and temperature structure 
inside a triangle, valid when the aspect ratio of the 
enclosure is vanishingly small. This circulation con- 
sists of a single elongated cell driven by the cold upper 
(sloping) wall, and the net heat transfer in this limit is 
dominated by pure conduction. They then examined 
the transient regime using a scaling analysis of the 
type due to ref. [8], valid for Prandtl numbers of order 
one or larger and for enclosed rectangular cavities 
with differentially heated end walls. The scaling argu- 
ments of PB led to the criteria for the existence of 
distinct thermal and viscous layers along both walls in 
the steady state, a characteristic of convective regimes, 
and showed that, when these boundary layers exist, 
the layers along the top and bottom boundaries 
develop simultaneously and the top layers reach a 
steady state after the bottom layers. Lastly, they per- 
formed numerical simulations of the transient behav- 
iour of the system for aspect ratios equal to 0.2, 0.4 
and 1.0; Grashof numbers equal to 10, 103 and 105 
and Prandtl numbers of 0.72 (for air) and 6.0 (closer 
to that of water). PB concluded that the numerical 
experiments confirmed the flow features described by 
their theoretical analysis of the problem for this range 
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NOMENCLATURE 

A aspect ratio, H / L  u, v 
Gr Grashof number, g~(Th -- TOH3/v 2 

y acceleration due to gravity u', v' 
H enclosure maximum height x, y 
L enclosure horizontal extent 
M mesh size x', y '  
N u  Nusselt number 
Nu, ~ ~ steady-state value of the Nusselt Ax, Ay 

number 
Pr Prandtl number, v/x  

Ra  Rayleigh number, 
go~(Th - -  TOH3/vx = Gr × Pr  

Racrit critical Rayleigh number 
t non-dimensional time, t'v/I-1 ~ 

t' time 
T non-dimensional temperature, 

( T" - T,) / ( Th - T,) 
T' temperature 
Th temperature of the warm horizontal 

wall 
Tj reference temperature, that of the cold 

sloping wall 

non-dimensional velocity 
components: u = u'H/v ,  v = v 'H/v  

velocities 
non-dimensional coordinate system : 
x = x ' H , y  = y ' H  

Cartesian coordinate system, y '  
vertical 

grid spacing. 

Greek symbols 
c~ coefficient of thermal expansion 
x thermal conductivity 
v kinematic viscosity 
co non-dimensional vorticity, rn'H~lv 

non-dimensional stream function, ~' /v  
~'  stream function 
~bm,~ maximum value of stream function 
I]/max/mi n maximum/minimum value of 

stream function 
I~min minimum value of stream function 
~o' vorticity. 

of the parameters; that the flow structure at steady 
state was characterized by the single-cell circulation 
pattern, that the convective-heat transfer mechanism 
was not the dominant one even at high Gr, and that 
the flow pattern was stable with respect to the Brnard 
instability expected in fluid layers heated from below. 

This work seemed then to yield an interesting con- 
clusion : while the enclosure is cooled from above and 
from the side (i.e. along the sloping wall) the observed 
natural circulation is of the type associated with 
enclosures heated from the side; namely, a single-cell 
as in a long rectangular enclosure with differentially 
heated vertical walls, even at the highest value of  Ray- 
leigh number they considered. The conclusion on the 
stability of the steady-state solutions was mainly based 
on direct numerical simulations and in support of 
some of their results they cite the agreement with the 
criteria derived from the scale analysis of the transient 
regime. However, a close examination of their scale 
analysis shows that some conditions do not rigurously 
follow from the assumptions, which may affect quan- 
titative comparisons. For  example, PB concluded that 
even for the highest Ra  of O(105), the dominant heat- 
transfer mechanism seemed to be conduction when Pr 
is of O(1). In support of  this conclusion, they refer to 
its agreement with the criterion for the existence of 
distinct boundary layers along the walls, which they 
had found to be that Ra~/4A ~/2 > 1. In their simulation 
with high Ra they concluded that a value of 
Ra~/4Al/2~ 7 is not appreciably larger than unity, 
hence, supporting the lack of existence of boundary 
layers. Apart  from the fact that an O(10) number is 
appreciably larger than unity (especially when con- 

sidering that for the lower values of Ra they used, this 
combination of  parameters yields values of 2 and 3 
which can be reasonably considered close to unity), 
the criterion itself is highly arguable. Following Pat- 
terson and Imberger [8], the condition for distinct 
thermal boundary layers requires that Ral/4A j/: > 1 

or equivalently Ra > A 2, and not the one mentioned 
above, as PB incorrectly state. The condition for dis- 
tinct viscous boundary layers yields Ra  > (PrA)  2 and 
the condition that a boundary layer along the sloping 
wall becomes convective before heat can be trans- 
ferred by conduction throughout the cavity requires 
that Ral/2A > 1. All of these conditions are amply 
satisfied with the values of the parameters used in PB's 
work, the latter condition being approximately equal 
to 54 with Ra of O(105), lending support to the con- 
clusion that the dominant heat-transfer mechanism is 
convection, contrary to PB's findings. 

The present paper reports on the numerical results 
obtained from a detailed analysis of basically the same 
problem, which led to different conclusions. The 
response of the two-dimensional, non-linear system to 
changes in all parameters was explored numerically 
using two different schemes. In Section 3, the numeri- 
cal model and numerical methods are described and 
in Section 3 the results are discussed in detail. Finally, 
some concluding remarks are stated in Section 4. 

2. NUMERICAL EXPERIMENTS 

2.1. The numerical  model  

The non-dimensional equations governing the con- 
servation of mass (volume), vorticity and energy at 



Convection patterns in a triangular domain 353 

X 

Fig. 1. A schematic diagram of the model geometry and 
definition of coordinate system. 

every point in the two-dimensional enclosure of Fig. 
1 are : 

au av 
~x + ~ = 0, (1) 

a09 ~x a ar (a 2 a 2) a~ + (u09) + ~-e (v09) = Gr ~x + ~ + ~y2 o9, 

(2) 

aT ~x (UT)+ ~y (VT) = 1 { a2 a 2 + (3) 

The non-dimensional vorticity, velocity and stream 
function fields are related by : 

aqJ a6 av au -W~. (4) U=~y v = - a ~  09-ax ay 

The non-dimensionalisation scheme is the same as 
that used by PB and is summarized in the Nomencla- 
ture. 

The system of equations (1)-(4) is subject to the 
following conditions. 

(a) Initially the fluid is at rest and the temperature is 
uniform everywhere. At time t = 0 the cavity is 
suddenly cooled from the top by decreasing the 
temperature of the sloping wall. 

(b) At the botton~t and top rigid boundaries, y = 0 
and y = Ax, respectively, the flow is subject to 
no-slip so that u = 0 = v; ~O = 0 there, and these 
boundaries are, kept at a constant temperature of 
T = 1.0 and T = 0.0, respectively (perfectly con- 
ducting walls). At the centre of symmetry, 
x = A -~, the flow is subject to slip ; u = 0 ; #J = 0 ; 
~k=0.0 there, while aT/ax=O.O (insulating 
wall). 

2.2. Numerical methods 
The triangular region sketched in Fig. 1 was covered 

with an M × M grid. The grid spacing (Ax, Ay) was 
chosen such that Ay/Ax = A, hence all uppermost 
points lie on the sloping boundary. On this grid, two 
different numerical schemes were used. The first scheme 
was implemented in an attempt to reproduce PB's 
results using the same techniques that the authors 
reported, and the second to provide an independent 
solution to the problem. The primary concern of this 

paper is to concentrate on the solutions to the con- 
vective problem rather than on a detailed numerical 
comparison of the two schemes. However, the dis- 
agreement between the solutions presented here using 
either scheme and those obtained by PB indicated that 
careful and extensive tests of the numerical techniques 
had to be performed. This was important not only to 
validate the present solutions, but also to rule out the 
possibility that the differences in results were due to 
numerical details. In this subsection, the numerical 
schemes will be briefly summarized and their differ- 
ences addressed within this context. 

(a) Numerical schemes. Scheme 1 was implemented 
following the general outline reported by PB for their 
numerical scheme. It used a second-order central 
differences scheme to approximate spatial derivatives 
at the interior grid points except in the non-linear 
terms, where a second-order upwind differencing 
scheme was used. An explicit, one-step forward diff- 
erencing scheme was then used to integrate the vor- 
ticity and temperature equations in time. The program 
used was based directly on the numerical scheme 
detailed in ref. [9, ~4.6, p. 359], adapted to the present 
geometry. Scheme 2 used the more accurate leapfrog 
method for time differencing, as well as central diff- 
erencing for all spatial derivatives, including the non- 
linear terms. On average it was found that this scheme 
was only slightly more costly than scheme 1. In both 
schemes 1 and 2, the elliptic Poisson equation (4) for 
the stream function ~b was solved using the successive 
over-relaxation method (SOR). A general for- 
mulation of the SOR method can be found in Chapter 
III of ref. [10], in particular a detailed discussion on 
the relaxation parameter, a factor that controls the 
convergence of the solution and whose 'optimum' 
value depends in general on the mesh, the shape of 
the domain and the type of boundary conditions. The 
accuracy of the SOR method for the present problem, 
as well as the goodness of the over-relaxation par- 
ameter which had to be found by trial and error, was 
checked by using standard NAGLIB subroutines. The 
direct method to solve the discretized form of equation 
(4) involves solving the system of simultaneous linear 
algebraic equations that results when using finite 
differences. The two methods yielded the same solu- 
tions well within the tolerance level of error associated 
with the overall numerical scheme. 

Boundary conditions are only available in an 
explicit form for the temperature, the velocity and the 
stream function fields, while solutions are sought for 
the vorticity and energy equations. The evaluation of 
vorticity at walls is extremely important because at a 
no-slip wall vorticity is produced and it is this vorticity 
that, when diffused and advected away from bound- 
aries, drives the problem. See again ref. [10] for an 
exhaustive general discussion on this matter. In prin- 
ciple and theory, from known boundary values of 
either velocity or stream function fields plus their com- 
puted values at all interior points, the vorticity at the 
boundaries can be evaluated. This indirect method 
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may introduce errors, and some care must be exercised 
so that the goodness or/and accuracy of  this approxi- 
mation does not  influence significantly the overall 
accuracy of  the numerical scheme. The values of  vor- 
ticity on rigid boundaries (~  = 0 along the axis of  
symmetry x = A-~ where slip is allowed) were com- 
puted using the velocity fields, as defined in equation 
(4), and the known boundary conditions on the vel- 
ocity field. This equation was approximated using a 
three-point forward/backward differencing scheme 
having a truncation error of  O (Ax 2, Ay2). Other alter- 
natives were tested in the present geometry and in 
cases where a known solution to an equivalent prob- 
lem was available. It was found that the method 
adopted here yielded the best results. 

In summary, both schemes here, as well as PB's, 
are second-order accurate and the difference between 
them basically rests on the manner of  approximating 
the non-linear terms. The main concern with scheme 
1, after testing solutions for the stream function and 
the boundary conditions on vorticity, is the fact that 
upwind differencing schemes, although stable and 
monotonic,  introduce significant false diffusion. On 
the other hand, methods that eliminate false diffusion 
may produce unphysical overshoots and undershoots, 
and lead to oscillations and divergence. This is 
especially the case for highly convective flows, for 
which false diffusion may seem a desirable feature. It 
is also well known that false diffusion may suppress 
useful information on both the approach to steady 
state and the steady-state flow itself [11-13] (and many 
others referenced therein). So far there does not  seem 
to exist a universal numerical scheme to be used for 
convection problems, and, in the light of  the tests and 
comparisons detailed below, scheme 2 was preferred 
over scheme 1. 

(b) Comments on resolution and comparison of  
schemes. Resolution tests were carried out using both 
schemes and three, sometimes four, different (uni- 
form) mesh sizes. The aspect ratio of  the enclosure 
was fixed at A = 0.2, the Prandtl  number at Pr = 0.72, 
and grids of  (Ax, Ay) = (0.25,0.05), (0.125, 0.025), 
(0.083, 0.0166) and (0.0625,0.0125) were tried for 
different values of  Gr, since the adequacy of  a given 
resolution depends on the flow regime ; which in turn 
(for a fixed A and Pr) will depend on Gr. Results will 
be summarized with single plots of  one descriptive 
quantity, such as the maximum value of  ~/ and its 
manner of  approaching steady state or the quantity 
that describes the heat transfer in the cavity, the Nus- 
selt number Nu, given by : 

~T 

For  Gr = 1 0  3, the solutions were unaffected both 
by the choice of  scheme and by grid resolution as 
shown in Fig. 2(a), where the approach of  Omax to 
steady state for all resolutions using scheme 1 is plot- 
ted. Virtually the same figure (not shown here) is 

0 . 3 0  

t ~  ~ (ax,/~y) = (0.25, o.os) 
0.25- Iv~ ........ (Ax, Ay) = (0.125, 0.025) 
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4 -  

2- 

0 , ,, 

., .............. :.::.....,.. 
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t 

Fig. 2. Summary of resolution tests. (a) Gr = 10  3, Pr = 0.72 
and A = 0.2. Time evolution of ~/max as calculated using 
scheme 1 and all different resolutions tested. (b) Gr = 104, 
Pr = 0.72 and A = 0.2. The time evolution of ~max/min a s  

calculated using scheme 2 and the indicated resolutions. 

obtained when using both schemes with a 
(Ax, Ay) = (0.125, 0.025) mesh. For  Gr= 104, the 
lowest resolution was inadequate, as illustrated in Fig. 
2(b), where results obtained with scheme 2 are used. 
It is also clear in this case that the improvement  in 
resolution beyond (Ax, Ay) = (0.125, 0.025) does not 
improve the solution significantly, while increasing 
significantly the cost of  a simulation. The results using 
scheme 1 for Gr = 105 yielded a similar plot, in a 
higher range o f  numerical values, and is not  repro- 
duced here. It is clear from the figures that the 
(Ax, Ay) = (0.125, 0.025) mesh is adequate for the 
purposes of  the present analysis and it was adopted 
subsequently. 

In view of  these differences, associated primarily 
with changes in Gr, it was instructive to follow the 
changes in the steady-state values of  I / /max/mi  n and Nu 
using both schemes as Gr changed gradually between 
1 0  3 and 104 in order to observe when these values 
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Gr 

Fig. 3. Summary of comparison of the two numerical 
schemes, with Pr = 0.72 and A = 0.2. (a) Steady-state values 
of ~m,x/mi, as a function of Gr, for values of Gr in the vicinity 
of a bifurcation. (b) Same as (a) but for steady-state values 
of Nu as a function of Gr. [For reasons of scale, values of 

(Nu-3.75) were used along the ordinate.] 

began to diverge. The results are shown in Fig. 3(a) 
and (b) for ~,x/mi. and Nu, respectively. It can be seen 
from this figure that solutions become significantly 
different as Gr is increased beyond a critical value of  
about  4 × 10 3, where the system undergoes a bifur- 
cation, and that the difference between numerical solu- 
tions obtained with the two schemes, al though large, 
remains approximately constant after a value of  
Gr .~ 5 x 103. This type of  test was also performed at 
a higher resolution, and similar plots were obtained 
(not reproduced here). Increasing the resolution with 
scheme 2 yielded curves that were practically indis- 
tinguishable from those shown in Fig. 4, with very 
small differences in the numerical values of  I # m i n  only, 
while curves obtained with scheme 1 did change appre- 
ciably. These changes, however, amounted to a nar- 
rowing of  the difference in results obtained with the 
two schemes, bringing the curves obtained with higher 
resolutions much c, loser together. The change in flow 
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Scheme 1 
------ Scheme 2 

I I I I '  I I I I I 
0.4 0.8 1.2 1.6 2.0 

Fig. 4. Summary of comparison of the two numerical 
schemes, with Pr = 0.72, A = 0.2 and Gr = 105 showing the 

variation of ¢max/min with time. 

structure when using scheme 1 with a higher resolution 
occurs at a lower value of  Gr, closer to that at which 
changes occur with scheme 2. These tests, in turn, lend 
further support  to the suitability of  a (0.125, 0.025) 
mesh for this study, as well as to the validity of  solu- 
tions obtained with the more accurate numerical 
scheme 2. 

Finally, results from the two schemes were com- 
pared for values of Ra (or Gr) of  O(104, 105) and these 
are summarised in Fig. 4 where curves of  the time 
evolution of  ~Omax and qJmi, for the case Gr = 105 only, 
are shown. Although numerical differences are large, 
especially in the values of  ~kmin, both schemes yield 
results that agree very well at earlier times, before the 
single cell breaks down, consistent with the agreement 
throughout  when Gr = 103, and with Gr = 104 these 
differences do not imply significant differences in the 
flow structure, while with Gr = 105 they do. With 
Gr = 105 the long-term behaviour of  I ] /max / rn in  

(especially that of  qJmi,) is indicative of  undulations 
about  the asymptotic steady-state field while both 
curves were 'flat' for large values of  t when Gr = 10 4. 

For  both values of  Gr, scheme 2 gives more accurate 
details of  the structure of  the flow everywhere, 
especially in the regions close to the tip of  the enclos- 
ure, where more cells could plausibly develop with 
time, at a slower rate, at high values of  Gr. The steady 
state obtained with both schemes using Gr = 104 is 
that of  three well-developed convective cells, while 
with Gr = 105 numerical differences are larger and 
scheme 1 yields a steady state with five convective 
cells while scheme 2 yields one with seven cells. These 
results will be discussed in more detail in the next 
section. Long time integrations were performed with 
both schemes, especially scheme 2, to ensure that the 
time steps and mesh size used did not  present problems 
with numerical instabilities with these values of  Gr. 
The results of  these tests give a consistent general set 
of  solutions in the range of  parameters considered in 
this work. 
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In summary, using both schemes it was found that 
the flow can bifurcate into a multi-cellular regime as 
Gr is increased, in which case lower resolutions are 
insufficient. Both schemes produce qualitatively (and 
quantitatively as well, when the resolution is 
increased) the same bifurcation, a transition in the 
flow structure that occurs at a critical values of Gr 
between 4 and 5 x 103. Although with air a (0.125, 
0.025) grid was deemed adequate and used 
subsequently, the persistance of the same solution at 
higher resolution using both schemes was confirmed 
by numerical simulations. In no case were PB's results 
reproduced. 

3. NUMERICAL RESULTS 

This section discusses the numerical experiments 
that were carried out to test and analyse the response 
of the system to changes in Ra, A and Pr. In the 
numerical work the Grashof  number  Gr = Ra/Pr was 
used and results will be discussed in terms of either 
non-dimensional  parameter, particularly in the case 
of air since Pr ~ 1. All results discussed below were 
obtained using scheme 2 described in Section 2, unless 
otherwise specified. 

3.1. The Rayleiyh number 
The following numerical experiments were directed 

at studying the changes in the system to changes in 
Ra, with a fixed value of Pr = 0.72, and at analysing 
the stability of the asymptotic solution obtained by 
PB. The steady-state asymptotic solution, valid in the 
limit .4 ~ 0 for an enclosure with a flat top boundary,  
represents to first order slightly tilted isotherms which 
give rise to a steady counterclockwise circulation. This 
circulation is such that the entire fluid is slowly en- 
trained in the slow gyre that fills the entire domain. 
The isotherm pattern indicates that, in this limit, con- 
duction is the dominant  mechanism for the heat trans- 
fer across the cavity. PB did not  analyse the stability 
of this solution but  their numerical results seemed to 
indicate that this basic solution was characteristic of 
all their simulations, at least qualitatively, up to a Ra 
of O (105). With Gr = 103 the aspect ratio A was varied 
between 0.01 and 0.2 to verify the validity of the 
asymptotic theory. They found that, except for small 
differences in the numerical values of the steady-state 
fields, changes in A did not  affect the basic steady 
solution which corresponded to that predicted by the 
asymptotic theory in this range of the parameters. 
This was also confirmed by the present study. As Ra 
was increased, however, this solution was no longer 
attainable, as discussed in details below. 

(a) Experiment 1: Gr  = 103, A = 0.2. Two runs 
were compared : one with the fluid initially at rest and 
the other with the initial flow given by the asymptotic 
solution. The runs yielded basically the same final 
steady state, results being slightly different at earlier 
times in the integration as expected. The steady state 
was reached in both cases, starting from rest or from 

the asymptotic field, at a non-dimensional  time 
t ~ 0.5. Incidentally, this was also the case when the 
scheme 1 described in Section 2 was used. A close 
inspection of the solutions at t ~ 0.2, the dimen- 
sionless time reported by PB as when steady state was 
reached, indicated that the fields were still changing 
considerably, although this was not as significant a 
change as occurs with higher values of Ra at this same 
time. To test for changes due to different boundary 
conditions, a simulation was performed with the no- 
slip condit ion on the vertical plane at x = .4 ~. This 
had no effect on the general characteristics of the 
numerical solution with these values of the 
parameters, producing only minor changes in the 
numerical values of the steady-state fields. The tem- 
perature and flow fields at steady state for this case 
are shown at the top of Fig. 5 [cf. Fig. 5(a)]. The 
approach to steady state was monotonic,  the iso- 
therms being slowly spread apart  to their final tilted, 
evenly separated position. 

(b) Experiment 2. As the value of Gr was increased 
from 103 the single-cell solution became unstable and 
a new steady state was achieved with three counter- 
rotating convective cells occupying the entire cavity. 
The onset of multi-cellular motion was studied 
numerically and Fig. 5 shows a summary of these 
simulations for particular values of Gr, although 
results were analysed for very small increments in Gr. 
Table 1 summarizes the salient features in this figure, 
showing the values of ~m~, (the counter-circulating 
cell) and ~max (the main cell) as the Gr is increased 
and after the steady state has been reached. It can be 
seen that with Gr = 3 × 103 the cell that occupied the 
entire cavity moves slightly towards the left side as it 
intensifies, creating a relatively large stagnant zone at 
the opposite end where the isotherms are still nearly 
parallel. As Gr is increased to 4 x  103 this process 
continues further with the flow in the main cell becom- 
ing more intense and the isotherms at the higher end 
of the cavity beginning to show clearly the effects of 
convective motions while the single cell remains. The 
multi-cell circulation starts to develop as Gr is 
increased past that value and the counter-circulating 
cell, although weak, is clearly detectable at 
Gr = 4.5 x 103. With Gr = 5x  103 this cell is well 
developed, with a flow intensity of the same order of 
magnitude as that of  the single cell with Gr = 103. 
In fact, bifurcation occurs at a value of Gr between 
4.009 x 103 and 4.01 x 103, which corresponds to a 
value of Racrit ~ 2886.84. This result was already 
apparent in the plots of Fig. 3, where the sudden 
changes in the values of ~//max/min and Nu with small 
changes in Gr about  4 x 103 indicated the sudden chan- 
ges in the flow regime associated with a bifurcation. 

(c) Experiment 3 : Gr  = 10 4, A = 0.2. In this case 
the system, which was started from a state of rest, 
evolves in the same manner  it evolved with Gr = 103. 
At earlier times, a single cell occupies the entire enclos- 
ure, the flow intensifies and at a non-dimensional  time 
t ~ 0.125 the primary cell occupies less than half of  
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Fig. 5. Steady-state stream function (~s, left) and temperature (T, right) fields with Pr = 0.72, A = 0.2 and 
(a) Gr = 1.0 × 103, (b) Gr = 3.0 x 10 3, (c) Gr = 4.0 x 10 3, (d) Gr = 4.5 × 103 and (e) Gr = 5.0 x 10 3, showing 
the change i~a flow regimes, from a single cell to a multi-cellular flow, as Gr is increased. All numerical 

values are non-dimensional and listed in Table 1. 

Table 1. Non-dimen,;ional steady-state values of ~/min and 
~max corresponding to the values of Gr used in the diagrams 

of Fig. 5 

Gr ~/n,in ~/max Contour interval 

1.0 x 103 0.00 0.16 0.02 
3.0 x 103 0.00 1.03 0.1 
4.0 x 103 0.00 2.40 0.2 
4.5 × 103 -0 .06 3.11 0.5 
5.0 x 103 -0.21 3.76 0.5 

the domain  and  a weak cell wi th  flow circulating in 
the opposi te  direct ion begins to develop. At  t ~ 0.3 
the three-cell pa t t e rn  is well established, reaching a 
steady state at  t ,~ 0.5. The three-cell pa t t e rn  is charac-  
teristic for s imulat ions with Ra ~ O(104) and  A = 0.2. 
As can be seen in the d iagram of  Fig. 6(a), the active 
convective cells occupy mos t  of  the region on  the 
higher  end of  the cavity, (i.e. x > 2.5 in the figure) 
leaving still a considerably large zone to the left where 
conduc t ion  is dorrdnant  (cf. i so therms diagram).  In 
this case as before,  a change in the bounda ry  condi t ion  
a long the vertical plane f rom no-slip to slip only pro- 
duced negligible cihanges in numerica l  values of  the 

solutions.  At  this value of  Gr the approach  to steady 
state is practically monoton ic ,  a l though  the data  
plot ted in Fig. 2(b) seemed to indicate the presence of  
weak oscillations in the system before it reaches steady 
state and  these were absent  with  lower Gr. 

(d) Experiment 4:  G r  = 10 5, A = 0.2. Three  runs 
were compared  to determine the sensitivity of  the final 
solut ion to initial condi t ions  : one with the initial fluid 
at  rest, ano the r  with  an  initial flow field described by 
the asymptotic theory and  a third one using the steady- 
state flow field corresponding to the single cell 
obta ined  with Gr = 10 3, mult ipl ied t h r o u g h o u t  by a 
suitable factor  to make  it closer in numerical  values to 
tha t  solut ion obta ined  by PB. In  all cases the solut ion 
repor ted by PB in this range of  parameters  could 
not  be obta ined  and  the single cell b roke  down into 
convective cells very early in the integrat ion,  at  a non-  
dimensional  t ime t ~ 0.05 or less. There  were some 
differences in the numerical  values of  these solutions 
but  these were deemed insignificant. 

Figure 6(b) shows tha t  the steady-state fields for 
Gr = 105 are those of  a convec t ion-domina ted  flow. 
The approach  to steady state was oscillatory. At  this 
value of  Gr there are seven fully developed convective 
cells in the steady state. The  initial large counter-  
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Fig. 6. Steady-state fields, stream function (~b, left) and temperature (T, right) with Pr = 0.72, A = 0.2, 
and (a) Gr = 104 and (b) Gr = 105, showing the differences between the two convecting regimes. All 
numerical values are non-dimensional. The values of ~b range between -3.27 and 8.22 with contour 

intervals of 1 in (a), and between -25.16 and 35.70 with contour intervals of 5 in (b). 

clockwise cell has been slowly pushed towards the 
rightmost end side and the appearance of  smaller cells 
towards the left end of  the cavity has eliminated 
almost entirely the large stagnant zone present in the 
case of  Fig. 6(a). The boundary condit ion on the 
boundary x = A-~ was changed to requiring no-slip 
and, as in the previous cases, it was found that the 
basic flow structure remained unaffected. A weakly 
counter-circulating small cell formed at the top corner 
of  the right side of  the cavity and numerical values of  
all fields were different but of  the same order. These 
numerical differences were slightly larger with the 
increased value of  Gr. The number of  cells, the 
approach to steady state, the flow intensity and the 
heat transfer rate all remained very close to the case 
with slip along that boundary, because the small new 
cell did not  distort the large cell and it did not  touch 
the hot  bot tom wall. In ref. [4], where solutions to a 
similar problem that are in qualitative agreement with 
the present ones are discussed, it is suggested that 
this difference in boundary conditions is the possible 
explanation of  their discrepancies with PB's results. 
However,  the present results indicate rather strongly 
that the discrepancies are not  likely to be related to 
these differences in boundary conditions. 

3.2. The aspect ratio 
As mentioned earlier, with a value of  Ra ~ 10 3 the 

changes in the aspect ratio A that were tested in this 
study did not  affect the circulation in the enclosure. 
Simulations carried out with a higher value of  Ra and 
different values of  A showed, however, that changes 
in A do affect the flow pattern and temperature fields 
significantly. In this analysis a fixed Ra of  0.72 x 105 
was used and numerical experiments were conducted 
with values o f A  = 0.1, 0.15, 0.3, 0.5 and 1.0, adding 
to the data obtained with A = 0.2. 

For  all values of  A except A = 1, the system evolved 
in time as with A = 0.2 described above. The flow 
structure changed with changes in A as depicted in 

the diagrams of  Fig. 7, where the steady-state fields 
obtained for the different values of  A indicated in the 
figure caption are shown. The main features in this 
figure are summarized in Table 2. The number of  cells 
that developed depended strongly on A, increasing 
with decreasing A, the cells becoming more com- 
parable in size the smaller A became. Since cells 
developed farther into the lower side of  the cavity as 
A decreased, the stagnant region near the tip became 
much smaller. Al though results are shown in the figure 
at t ~ 1.0, integrations were carried out for long 
enough times, particularly those with the smaller 
values of  A, to verify that the flow structure would 
remain as that depicted in the figure. Time and space 
resolution were also tested for the small aspect ratio 
experiments. It is worth noting that al though the 
three-cell circulation characterizes the steady states 
with A = 0.5 and Ra = 0.72× 105 and that, with 
A = 0.2 and Ra = 0.72 x 10 4, their size and the inten- 
sity of  the flow associated with them are significantly 
different. These differences imply significant differ- 
ences in the associated heat transfer, as can be seen 
from comparing their respective isotherm diagrams as 
well as their respective Nu vs time curves. 

The case A = 1 is one of  a single-cell, steady-state 
circulation, as in the experiments reported by PB, 
although the agreement in numerical values is rather 
poor. In the present experiments, the maximum value 
reached by the stream function at steady state is more 
than three times larger than that obtained by PB and 
the temperature fields were not  reported there. It 
should be noted that this experiment was also carried 
out with scheme 1 and that the results obtained with 
that numerical scheme were basically the same, con- 
sistent with the agreements between results from both 
schemes, as detailed in Section 2. The steady-state 
isotherm pattern for A = 1 in Fig. 7 indicates that this 
solution cannot be stable. In particular, it is not stable 
to small departures from A = 1, and as A is decreased 
the single cell was no longer attainable. Al though a 
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Fig. 7. Steady-state stream function (~, left) and temperature (T, right) fields with Pr = 0.72, Gr = 105 and 
(a) A = 1.0, (b) A = 0.5, (c) A = 0.3, (d) A = 0.15 and (e) A = 0.1, showing the change in flow structure 

as the aspect ratio is decreased. All numerical values are non-dimensional and listed in Table 2. 

Table 2. Non-dimensional steady-state values of ~min and 
~km~ corresponding to the values of A used in the diagrams 

of Fig. 7 

A Cmi. ~b~x Contour interval 

1.00 0.00 18.41 2.0 
0.50 - 11.02 25.85 5.0 
0.30 - 18.30 32.21 5.0 
0.15 -29.90 39.39 5.0 
0.10 -30.55 39.89 5.0 

numerical stability analysis when varying A was not  
performed in the :~ame detailed manner  as that per- 
formed with changes in Ra, the results presented here 
indicate that a rich pattern o f  bifurcations takes place 
in this physical system as the different parameters 
that control its b,zhaviour vary. The study of  such 
bifurcation patterns is beyond the scope of  this paper 
and it will be pursued elsewhere. 

Direct quantitative comparisons with the results 
reported by ref. [4] are not  possible because of  the 
differences in geometry, range of  parameters and 
different boundary conditions they used in their 
numerical experiments. It is useful to note, however, 

the qualitative similarities in some results. The present 
case with Ra = 0.72 × 105 and A = 0.5 is qualitatively 
equivalent to their numerical simulations at Ra = 104, 
with A = 4 (defined using their nomenclature) and 
with the cold plate inclined by about  25 ° with respect 
to the horizontal. The three-cell circulation they 
obtained for this simulation persisted up to a value of  
Ra = 8 x 105, in the present notation. For  the largest 
angles they used, the relationship between the angle 
of  inclination and the aspect ratio is approximately 
the same as the one defined in here, and it is interesting 
to note that with an angle of  20 °, which is the closest 
analogue to an aspect ratio of  about  0.4 in here, they 
find a steady state with five convective cells. Their 
work also seems to indicate that a decrease in aspect 
ratio for a fixed (high) Ra yields an increase in the 
number of cells present in the steady state. 

3.3. The Prandtl number 
The case of  a cavity filled with water was also con- 

sidered in several experiments. With a fixed A = 0.2 
and Pr = 7.1, the values of  Gr = 102, 103, 104 and 
l0 s were used in the numerical simulations of  this 
subsection and results are summarized in Figs. 8 and 
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Fig. 8. The Nu approach to steady state for numerical exper- 
iments with A = 0.2, Pr = 0.72 and Pr = 7.1 and the values 

of Gr indicated on each curve. 

10, which show Nu vs t and Nu, ~ ~ vs Gr, respectively, 
for all these simulations. As expected, the time needed 
to reach steady state is greater than in the equivalent 
cases using air, as can be seen from comparing curves 
for air and water in Fig. 8. 

Steady-state stream function and temperature fields 
were plotted in the same fashion as those shown in 
Figs. 5-7. For  the sake of  brevity, however, and in 
view of  the close similarities in flow patterns with 
results using air, especially for the lower values of  
Gr, these plots will not be reproduced here. The flow 
structure with Gr = 102 and Gr = l 0 3  is virtually 
identical with that of  Gr = 103 and Gr = 104, respec- 
tively, with air. The difference is, as expected, in the 
flow velocities, which are an order of  magnitude less 
than with air. These similarities are clear in the curves 
of  Nu vs t for Pr = 0.72 and Pr = 7.1 in Fig. 8 for 
these values of  Gr. The steady-state flow structure 
when Gr = 104 presents some similarities with that of  
Gr = 105 and Pr = 0.72, such as the same number of  
cells attained at the final state. The cell structure, 
however, was notably different and, as can be seen 
in Fig. 8, there was some evidence of  low-frequency 
oscillations in the steady state in the case of  water 
which were not  present with air and all the values of  
Gr used in this study• 

When Gr is increased to 105 with Pr = 7.1, numeri- 
cally stable simulations were no longer possible with 
the grid size used so far, that of  (Ax, Ay) = (0.125, 
0•025) also used by PB in the only case they addressed 
with water, and it was necessary to use a 
(Ax, Ay) = (0.0625, 0•0125) mesh and to adjust the 
time stepping accordingly. In this case, unlike with 
air, examination of  Fig. 8 shows a high-frequency 
oscillation about  an average value of  Nu = 10, with 
amplitude about  10% of  the average. Examination of  
the stream function data showed that the cell structure 
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Fig. 9. The dependence of Nu on time for numerical exper- 
iments with Pr --- 0.72 (air), Gr = 105 and the different values 

of the aspect ratio A used in this study. 

was unstable, in fact resembling weak turbulence. 
These results indicate that further bifurcations have 
taken place and, al though the classification of  these 
bifurcations is not  possible with the present limited 
numerical data, it is clear that the steady-state multi- 
cell structure is unstable in this parameter range. It 
should be noted that although the case of  water was 
not as extensively tested with scheme 1 as the case of  
air (see Section 2), an early at tempt to use that numeri- 
cal scheme with water, the higher value of  Gr and the 
(0.125, 0.025) grid also resulted in numerical insta- 
bilities that developed at a later time in the integration. 

3.4• Summary o f  heat transfer calculations 
The dependence of  the Nusselt number on time 

for all the experiments with A = 0.2 and all different 
values of  Gr with Pr = 0.72, and Pr = 7.1 is shown in 
Fig. 8. In all cases, Nu rises abruptly to close to its 
final value, and slowly increases thereafter to its steady- 
state value. For  high values of  Gr there is some oscil- 
lation in the values of  Nu as they approach steady 
state, but the behaviour reported by PB, a rise in Nu 
followed by a subsequent decrease to a final steady 
state value, was not observed. The circulation in the 
cavity with Gr = 1 0 3 ,  although very weak, already has 
an effect on the overall heat transfer, as expressed in 
the significant departure from unity shown by the final 
value of  Nu, indicating the contribution of  convective 
motions to the overall transport of  heat. 

Figure 9 shows the evolution of  the Nusselt number 
in the approach to steady state for all the different 
values of  A. In all cases the evolution to steady state 
is oscillatory, the oscillations being more intense with 
the smaller values of  A. In Fig. 9 all curves are similar 
except for the curves corresponding to A < 0.2. The 
steady-state values of  Nu are not  significantly different 
in this range of  A : however, the evolution to the final 
state is different with A = 0.1 and 0.15, suggesting a 
possible change in the time evolution of  the system 
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Fig. 10. Summary of numerical heat transfer results for all 
the experiments in thi:; work. The steady-state value of the 
Nusselt number, Nu, ~ ~, is plotted against the Grashof num- 
ber for the aspect ratios and Pr values shown in the legend. 

which was not investigated. As in the results of  Fig. 
8, N u  rises rapidly and remains thereafter close to its 
final value. 

The effect of  Gr on the final heat-transfer rate for 
all values of  A and P r  studied in this work is sum- 
marized in Fig. 10. It can be seen from the figure that, 
up to a value of  Gr of about  10  3, the final overall rate 
of  transfer of  heat, as measured by the steady-state 
value of  N u  and'derLoted by Nu,  ~ ~,  is not  a function 
of  Gr and only a weak function of  Pr. In this sense, 
the system may be Lhought of  as a quasi-conductive 
system within this parameter range (recall that for 
Gr <~ 1 0  3 changes in A did not  affect the final state of  
the system). Beyond this point, a structure of  bifur- 
cations is taking p]ace which depends on all three 
parameters, Gr, A and Pr. It should be noted that 
the point corresponding to Gr = 105 for water in this 
figure is somewhat arbitrary and has large error bars 
associated with it since at t ,~ 1, when these values are 
computed,  the system is oscillating (see Fig. 8), and 
this fact has not been included in the values shown. 
Also in the figure, results obtained with Gr = 10  6 in 
air are shown for comparison. The latter case, of  
which only a preliminary result from a test at that 
high value of  Gr is shown, required a significant 
improvement  in resolution for numerical stability. The 
values o f N u ,  ~ o~ for the larger values o f  Gr are shown 
for a rough comparison with data at lower values of  
Gr. 

4. CONCLUDING REMARKS 

The problem of  natural convection inside irregular 
enclosures was re-examined using a two-dimensional 
triangular geometry filled with air or water, with vari- 
ous aspect ratios and for Rayleigh numbers ranging 

between 102 and 105 . Numerical  solutions of  the time 
dependent problem were obtained using two different 
numerical techniques, which while yielding different 
numerical values for the flow fields especially at high 
Ra,  did not alter the general structure of  the flow. 
The general flow structure corresponded to a single 
convective cell for low values of  the R a  number and 
to a multi-cellular regime for the high values of  this 
parameter. 

Poulikakos and Bejan [6], referred to as PB and 
who first reported solutions to the same problem, did 
not  define their numerical scheme precisely. They 
stated clearly, however, that they used the central 
difference formula for spatial derivatives except for 
the non-linear terms and that to solve the vorticity 
and temperature equations they used a function sub- 
program as that given in ref. [9]. This is the general 
outline that has been followed in developing the 
second-order scheme 1 in this paper. If, furthermore, 
boundary conditions were handled by PB in the 
manner  indicated by both references they give, refs. [9, 
10] in this paper, then we must conclude that scheme 1 
here is as close to PB's scheme as it can possibly be, 
without having a numerical code for more concrete 
comparisons. Both schemes should have, then, the 
same overall order of  accuracy. Different boundary 
conditions and their effects on the solution were 
tested, different ways of  approximating boundary con- 
ditions on vorticity were checked, time and space res- 
olution was amply tested so as not  to rely on PB's grid 
size only, and, in a limited context, the sensitivity to 
initial conditions was also tested. All of  these tests 
support  the view that the disagreement between the 
solutions presented in this paper and those of  PB 
cannot be explained in terms of  differences in numeri- 
cal schemes. The alternative second-order scheme 2 
developed in this work, although more accurate for 
higher values of  the R a  number, yielded the same 
solutions as those obtained with scheme 1. Finally, 
the solutions obtained in this paper for the problem 
of  convection in a triangular enclosure is in qualitative 
agreement with other numerical and experimental 
works on similar problems in enclosures of  small 
aspect ratio and in the same range of  values of  Ra.  
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